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ABSTRACT r7

A method is presented for performing vehicle wind response studies
including the effects of variations in vehicle data such as aerodynamic
and mass characteristics. These variations are combined in such a manner
as to yield a 99.87 percent probability value for the maximum bending
moment experienced by the vehicle when flying through a deterministic
wind profile., A step-by-step procedure is presented for calculating the
moment and other flight dynamics parameters.
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TECHNICAL MEMORANDUM X-53042

A TECHNIQUE FOR INCLUDING THE EFFECTS OF VEHICLE
PARAMETER VARTIATIONS IN WIND RESPONSE STUDIES

SUMMARY

A method is presented for performing vehicle wind response studies
including the effects of variations in vehicle data such as aerodynamic
and mass characteristics, These variations are combined in such a manner
as to yield a 99.87 percent probability value for the maximum bending
moment experienced by the vehicle when flying through a deterministic
wind profile. A step-by-step procedure is presented for calculating the

moment and other flight dynamics parameters.



I, INTRODUCTION

In the past much mystery and doubt have surrounded the "root-sum-
square' procedure employed by the Aero-Astrodynamics Laboratory in(zom-
puting rigid body wind responses for use in in-flight load calculation@w
There has been some criticism that the technique is a worst-on-worst
case sort of thing resulting in much too conservative values for wind .
induced loads. Some of this criticism is justified, but much of it
stems from a misunderstanding of what the procedures really are., To
eliminate the latter type of criticism and perhaps reduce the former,
these procedures will be explained in detail in this report.

A rigid-body, constant coefficient, two-degrees-of-freedom model
is assumed for the vehicle. Using this model, a statistical analysis
is performed which combines the effects of variations in random param-
eters, such as the center-of-pressure and center-of-gravity locations,
on the peak vehicle bending moment., The wind disturbance is assumed to
be deterministic and might be, for example, a profile constructed from
95 percent wind speed and 99 percent wind shear data, although this
particular choice is not necessary,

The analysis yields a 3-¢g value for the peak bending moment (with
proper assumptions) and also gives values for the random parameters
which will cause the 3-¢ peak moment to occur. As a by-product, the
angle of attack, engine gimbal angle, etc., causing the 3-0 value for
the moment are also obtained. The results are given in terms of a
procedure which can be implemented on a computer to obtain numerical
values,

Although the analysis is based on a simplified model of the rigid
vehicle, wind response studies performed using the resulting technique
can be conducted using a six-degrees-of-freedom, constant coefficient
model without introducing significant error., Also, the procedure is
applicable to a model which includes slosh and bending dynamics,

The use of statistical techniques in analyzing linearized systems
is discussed in Appendix A. These are standard techniques which can be
found in any textbook on the subject, but are included here for complete-
ness, Included is a derivation of the 3-0 or so-called root-sum-square
value,

In the text, a discussion is given of how the statistical approach
can be used to compute a 3-g or root-sum-square value for the bending
moment. The root-sum-square derivation is again included because of a
slight change in concept from that in Appendix A. A step-by-step pro-
cedure is given for computing the design bending moment together with
corresponding angle of attack and gimbal angle.




II. WIND RESPONSE STUDIES

‘Computer studies are performed using a six-degrees-of-freedom
digital simulation with time-varying coefficients in.the vehicle equa-
tions-of-motion, However, experience has shown that little error is
introduced by studying the system at different time intervals on the
flight trajectory with velocity and dynamic pressure fixed and motion
considered in only a single plane, Such a simplification results in
only two degrees of freedom, e.g., yaw rotation about the c.g. and
translation lateral to the reference flight plane.

To simplify the statistical analysis of the effect of parameter
perturbations on wind responses, the simplified representation of the
vehicle motion will be used. However, although the results are obtained
from this simplified model, the wind response studies using these
results can be performed with the six-degrees-of-freedom model,

The two-degrees-of-freedom constant coefficient equations, together
with definitions of symbols, are given in Appendix B. Also appearing
in Appendix B are the random parameters which are usually varied to
determine statistical values for the response variables,

The wind is not considered as a random perturbation, In Aero-
Astrodynamics Laboratory control studies, a deterministic representation
of the wind is obtained by constructing wind profiles using 95 percent
wind speed values with 99 percent shear and embedded gust values, The
shear and embedded gust values are reduced by 15 percent to allow for
the fact that the possibility of a 99 percent gust occurring at the
altitude at which the wind peaks, while simultaneously the wind is build-
ing up through 99 percent shear values is very remote. The reduced
embedded gust is superimposed on the wind profile at the time for which
the peak wind occurs,

In designing the vehicle's stfucture, one is normally interested
in the peak values of angle of attack, gimbal angle, bending moment, etc.,
which will be experienced when the vehicle responds to the wind. Because
of the uncertainty in the calculations of center of pressure location,
center of gravity location, total aerodynamic force, etc., it is neces-
sary to include a margin of safety in the design data so that there is
an assurance that these uncertainties will not cause the vehicle to
fail, :

The one function of the vehicle response variables which gives
the best indication of the aerodynamic load situation is the maximum
bending moment., Here, the maximum is understood to be calculated over
the vehicle length and is thus the bending moment at a particular
vehicle station., In addition, however, in considering the dynamic effect




of the vehicle's response to winds, the peak value (maximum over time)
of the maximum bending moment is significant, This peak bending moment
is, in fact, the best measure that a control engineer has of the struc-
ture's reaction to wind disturbances. :

Consequently, the statistical approach is directed toward deter-
mining the effect of variations in the random parameters on the peak
bending moment. To avoid ultra-conservative designs, a 3-¢ or 99.87 per-
cent probability level of peak bending moment is sought rather than
taking worst-on-worst case variations for the parameters,

III. ROOT-SUM-SQUARE BENDING MOMENT*

A 3-g value for the peak value of the maximum bending moment is com-
puted as follows: We have for the bending moment at the station for
which the maximum occurs,

MB = MB {M& (x1, %x2), X3, Xy ees Xk] ' 1),

where M}, is the bending moment coefficient due to angle of attack,

Xy = Xcp, X2 = Oy, and the remaining x's are the other parameters with
spreads such as Xgg, 28, F, etc., (see Appendix B). In equation (1),
Mp is considered as an explicit function of M}, and the x's with M} a
function of x; and x5, This choice of dependence for the bending
moment is selected because it results in a simplification of the com-
putations required for calculating Mg ss® We will assume M%, bending
moment coefficient due to gimbal angle, is not affected by ehe param-

eter variations because these effects are usually small,

A 3-0 value for My will be computed'using the first order linear
approximation to Mp, i.e.,

.- % M'+-k6MB .
B MBN oM o Sxi i’
An i=1 N
where N denotes nominal or mean value.
In terms of o and B the bending moment is (see Appendix 'B)

ty =0

* For a more detailed derivation of the root sum square variable,
see Appendix A,
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where we assume that the nonlinear aerodynamics‘appear by making M(,
dependent on angle of attack., We consider here only a single value of
Q, that value for which Mfmax occurs, Thus,

—_'- e a
a%%
and evaluated at the nominal
o | T N
(04 N

which is the maximum value of the angle of attack for the nominal
vehicle., (@ and B peak at the same time with no actuator lags, thus
giving also the peak moment at that time,)

Also, we have with variations at the nominal point

BM& aM('x

L = e—— —

Ana S [Am 5 | A% (2)
N N

Thus,
b ! S

M, =M., + &l oax, + =2 Axo|+ s | A%
N N i= N

"Since we consider M!, an independent variable in the above expression

for My, the partials in the sum oMp/Ox;, are computed holding M& con-
stant,

Being able to compute the partials,

My
axi ?
N

while holding M& constant at its nominal value, is an important point,




because it allows a significant simplification_in the machine computa-
tions required for obtaining the rss bending moment. M' constant means
the approximations to the partials oMg. /dx; can be computed using aero-
dynamic load distributions, corresponding to only a single angle of
attack, QN Thus, a bending moment rss value can be computed without
requiring O:has an explicit function of ¢, Furthermore, M} need be

computed both with and without parameter perturbations using the max
nominal angle of attack only,

The square of the moment variation is

( )2 = - Mp )2 = \ % Axq + % Ax i
AM-B (MB BN ; O§ axl N 1 axe N 2
k ' k
BMB BM' o' BME
+-<:}: E;—- ij) + 200 [ Oxq +-§§é§ Axa] :E: E;;; b
i=l N N i=l N

The variance is

s [on] - {GE]) s [oo] GE] o o]

-?;{% >2 E [(Axi)z} + 20 -53?% % E [(Axl)z:l

N N N

+
e )
[nafts

3
+ == 2_1:";' E[(sz)z]}’
N

N

where all terms with Axj Axj, i # j, vanish if we assume the x's are
statistically independent.




Taking the approximation to the partials

A ' nt A
! X,
i Y ?Moz _ 9, M i
OXq a3} OXo Jas ox i Ax i
N N N

where each of these variations are taken with all parameters at their
nominal values, we obtain

OﬁB [(AM > <fM;X1 <fjx2 xz

1) . 1]
k X, 2 AMOd MBX:L L\MO! ﬂiBXg
+ =) o2 +2 oy o2 + — 22 o2
Axi xi aN Axl X 4
i=1

Xy X A SRA 3
where

XN

= E [(Axi)z] .
i

Multiplying by 9, the (30)2 moment deviation is

= ] on e (o) o g} (2

oM Ay oM
Bxl

(04 o4 BX2
X 4 2 DX o 2
+2a]J 30 + 30. ) }-.
{ Axl Axl ( Xl) AXg AX2 ( Xo




Now taking Ax; = 30, when computing the partials, we obtain
i

| k
3 2 = ' 2 ' 2 2
Gog )® = o {(ma&l) + (AMang) }+ Zl (AMBxi) +
i=

v {on, ot von, o |
2

k
= LI 2 1 2 3? 2
(aN AManl + BXl) + (aN Ma + mBXg) + i (MBXi) ¢

2 i=3

Thus, the 3¢ or root sum square bending moment is

k f

Z (A, )2

Mgy “ Y ® [ By ¢ A )ty o e )% )

JA> S

&)

where the positive root is used if Mp > 0 and the negative root if

MBN < 0. With the x; normally distributed, this is a 99,.877% probabi-
lity level.

IV, DETERMINATION OF CORRESPONDING VARIABLES

In computing the values of other variables, such as angle of
attack, engine gimbal angle, etc., corresponding to the Mp case,
basically the same procedure is followed as in Appendix A. That is,
a maximum value for Mp (MBmax) is computed by simultaneously taking
30 values for each parameter x;, denoted by (30)Axi, and in such a
direction as to increase the magnitude of the bending moment. Then the
ratio, A, is determined -




MB -
_rss

W “

and variations A (3G)AK‘ taken for each parameter x; in the equations

of motion., Rt
To obtain the M& value resulting from these variations, one might

recompute M& using an aerodynamic load distribution which gives

X, =X + A (30) and x + A (30) .

Then this new M' value, together with variations A (3G)Ax in the equa-
tions of motion (Appendlx B), could be used to compute the MB,gg and
its corresponding Q, B, etc., However, to avoid this additional M' com-

putation, a first order approximation to M' is obtained using equa—
tion (2).

In this manner, using the approximations for the partial derivatives,

we obtain
alN o'
(04 a
P =S TR RIS R (5)
o (30) (30)
DX q N JAS N

Thus, taking Axy = (3G)Axi’

A o= ! + . (6)
[0 Oﬁxl O%Rg
This change in M' should be used in computing M and this will be

either added or Subtracted from Myy depending on fie sign which results
when (30) and (30) are chosen to maximize Mg.
A3 AL S




In determining the corresponding o, B, etc., we take /Ax; = A (30)Ax
Substituting into equation (5) yields

M&=A[AM& + ' ] . : ' D)

Hence, this change from the nominal is used for M& in determining cor-
responding values for the parameters,

That this procedure should yield approximately the MBrss is seen
from the following:

The linear approximation gives, for MBrss’

Ay My
Mpres = Man T % [a—x‘ GO e | A <3°>Ax2]

Regrouping the factors

MBrss = Mpn T K ?;iof ‘><$°)&1+<A

k BMB
+Z 'g-x— A(3G)Ax.

i=1 N

oM!
e
BX2 ‘\>(30)AX2]
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Now with the approximate values for the partials

- k
I— L ' ]
Mp oo = Mpy LA (@ar  + a0 )} + Z A (AMBXi).

Axl Do

[

This equation states that the variation in Ma caused by the A (30)

and A (30) Ax varlatlons can be approximated by taking the varlatlon
2

A I:AM' + A ]
[0 a
Axl JAS
. ] .
in MQ‘ when computing MBrss'

V., STEP-BY-STEP PROCEDURE FOR COMPUTING MB,gq

Summarizing, the following procedure is used in computing an rss
bending moment:

(1) Using wind profiles constructed from 95% wind speed
values with 997% shears and gust reduced by 15%,compute
the response for the nominal vehicle,

(2) Using the nominal Op,, obtained from step (1), compute
'N using a load distribution including nonlinear aero-
dynamics corresponding to this maximum angle of attack,
The load distribution should give nominal xcp and Cy
corresponding to the angle-of-attack value used.

(3) Using the same Omgx, obtain the load distribution which
gives the 3-g value for xgp. Compute M&ACP Man using

this load distribution. Then AMan MO‘AXJ_ MozN-

(4) Take M' = MO‘AX (1 +K) MON where K is a specified
constant (K = .06 for Saturn IB and Saturn V at this

writing.) Then M&Ax =K M(')N'
1

11
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(5

(6)

)

(8)

€))

Using the nominal value of M, obtained in step (2), com-
pute Mpy = My Opax + Mé Bnax> Where Opax and Ppax are
for the nominal vehicle. (These occur at the same time
without actuator lags.)

Using M{y, compute the peak bending moment which results
from a separate 3-g variation of each of the parameters

x;. Denoting this by MBxi’ find AMBxi = MBXi - Mpy.

Compute Mg, . using equation (3) and values obtained in
steps 1 through 6; Oy is the max ¢ for the nominal vehicle.

Compute M by simultaneously taking 3-¢ variations in
each of the X; in a direction which will maximize the
moment, Use AM& as defined in equation (6). Compute

"B.gs ~ BN
A= Y v

Bmax ~ VBN
Multiply each 3-¢ value for Ax; by A and use oMy, as
defined in equation (7). . Take these Axi-values in their

worst direction as in step 8, and compute the bending
moment using the vehicle equations of motion (Appendix B).

This bending moment will be approximately equal to the rss value.
The values for ¢, B, etc., obtained in computing Mp using the vehicle
equations, are the q, B, etc., corresponding to MBrss'




APPENDIX A
STATISTICAL APPROACH

This appendix derives the root-sum-square value of a general non-
linear function of several random variables. Only very elementary laws
of probability are required for the development.

After presenting the fundamental ideas and definitions of probability
theory which are required, a first-order linear approximation to a non-
linear function of several random variables is used to compute a 3-0 or
99.87 percent probability value for the function. The random variables
are assumed statistically independent and normally distributed about
their means., With the linearity approximation,the function itself is
normally distributed about its mean, This 3-¢ value is then related to
the root-sum-square value for the function.

Fundamental Ideas

Given k random variables xj, i = 1, 2, k, with probability densities
pi (xi) the mean value of xj is defined as

(o]

E [xg] Sy @ IR

- 00

and the variance
[e0]
. 2 = 2 = e - 2
E [(xl - Mxi) ] Uxi f (Xl Mx]-_) pi (xi) dxi’
-00

where E [x] reads the expected value of x.

If the random variable is normally distributed, it is well known
that these two variables, the mean and variance, completely determine
the statistical characteristics of the random variable., 1In what follows,
all random variables are assumed normally distributed.

Repeated use will be made of the following propositions in the
discussion:
) n n ’ n
= = A-1
E [ }: aixi] }2 E[aixi] }: a; E [in, (A-1)
i=1 i=1 i=1

with the aj constant weighting factors. 5
1



Elxy] = E[x] E[y] (a-2)-

if x and y are statistically independent random variables. Each of these
laws is easily derived from the definition of E[x] using basic laws of
probability together with sufficient regularity requirements on the pro-
bability density functions.

Functions of Random Variables - Its Mean and Variance

Suppose we have f(x;, ... Xx) defined with nice properties (which
is always assumed in superficial treatments such as the one here) on the
range of the random variablgs X;. We seek E [f£(x3, ... Xj)]= Mf and
E[f{(x,..., Xk) - Mf}z] = J¢.

In general, f is a nonlinear function of the x;. However, for _
small variations of the xj from their mean, i.e., (xi - Mx;) small, we
can obtain a first order approximation to the mean and variance of f in
the following manner: Assuming £ analytic in a neighborhood of the point
Gﬂxl, ooy Mxk) = My expand f in a Taylor series about this point. This
gives (with x = (X3, ..., X))

k

£f(x) = £(Xyp cee, X)) = fOMxl, ooy Mxk)-+ }:fxi(Mxl, cees Mxk)(xl - Mxl)
’ i=1
+ higher order terms,

where

Q/

£, Qi) =x—f i

i i
x=Mx

Dropping all the higher order terms in the expansion, we obtain

. k
£(x) = £0f, wons My ) + Z ey Qs voe Mig) (R = My ). (a-3)

i=1

Now using propositions (A-l1) and (A-2), together with representation (A-3)
for £(x), we can determine the mean and variance of f£.

14




For the mean of £, we obtain

k
E[f(x)] = E[£Q)] + Z E[fxi(Mx)] Elx; - Mxi],

i=1

resulting from using propositions (A-1l) and (A-2), Note that fxi(Mx)
is not random; therefore, it is statistically independent of (Xi - Mxi)'

In fact;,E[fxi(Mx)] = fxi(Mx)° Again using proposition (A-1)

E[xi - Mxi] = E[xi] - E[Mxi] = Mxi - Mxi = 0.
Hence,

Mg = EIf()] = E[£QL)] = £Qf) = £Q0% 5 .05 My ). (A-8)
Thus, the mean value of f is the value of the function evaluated at the

mean or nominal values of the random variables.

For the variance of f,

02= E[(£(x)-Mg)?] = E[(f(x)-f(‘Mx)>2] = E[£2(x) - 2£Q1) £(x) + £2Q1,)]
= E[£2(x)] - 2£Qfx) E[£(x)] + £2(My).

Since E[£(x)] = £(Mx) from (A-Z;), we have

0% = E[£2(0)] - £201,). @-5)

15



Now, computing E[£2(x)],

k

oo+ § e ]

i=1

E[£2(x)]

]
=

k
-
= E| f2(M,) + 2fMy) y fxi(Mx) (x; - Mx]-_)

ok o
{5 o0 e
l=

k
E[f2Q )] + 2£ (M) z fxi(Mx) E(xy - Mx;)

i=1

k 2
B o o]

=

The second term is zero since E(x; - My.) = 0. Hence

k
E[f2(x)] = f2My) + E[ Z fi.(Mx) (xi - Mxi)z
=1 *
k
+ Z fxi(Mx) e, ML) (x5 - Mxi) (xj - rgc,)} .
1,31 ! ’
i#j

16




Therefore, from (A-5)

02 = E[£2()] - £2(4) = Z £x, QL) Bl - M )@
. i=1 L ’ .
k
+ Z e, 0 £, 0L ELGe, = M) Gy - Mg],
i,j=1
i#j

Since E[(xj - My )®] = 0% , and since
i i

ELGry - M) oy = My )] = LGy - Me)] ELGey - % )] = 0,

with x; and X statistically independent, we obtain for the variance

k
0,2 = £2 o) g2
f xi X X..

i=1 1

Or for the standard deviation of £

. k L
2 - 2 2 -
oF /Z fxi(Mx) Gxi . (A~6)
i=1

A 3-g deviation is

k L
3o, = / Z £, 00 Gox)? . . @-7)
i=1

17




With our linear approximation to f, we have f normally distributed
about its mean f(My); hence, we have 99.87 percent probability that

B

k
£(x) = £Q4,) + zf,%i(ux) (30x;)% . (A-8)
i=1

In this manner, if we use the term on the extreme right of the inequality
as the critical value or, say, design value for the function f, we are
designing to a 3-¢ probability case. If f(My) is negative, the negative
root should be used to get the design value,

Summarizing, the mean of f is the value of the function evaluated
at the mean or nominal values of the parameters, and the standard deriva-
tion for f is given by (A-8). Since we have used the linear approxima-
tion to £, its distribution is Gaussian, and the 3-¢g value corresponds
to a 99.87 percent probability level,

Relationship of Variance to Root-Sum~Square Value

Suppose now we obtain a further approximation to the previous
calculations by the following: Take

. (M ) N f(MXl’ ngs Mx]'_ + &i’ sosy Mxk) = f(Ml: Mz: cesy ij_’ seey Mxk)
AOf,
_ 1

e

where Afi denotes the change in f for a Axj-change in xj. 1In fact,

lim ﬁii
fx,(Mx) =Axi—->0 -_—
i i
Also, take
&x, = 30 .
i .
i

18




Then

{g‘ ' k  (Af )2 ! k Bk
i _
f2 30, )2 = ——= 3 2 = y )2 .

i=1 i=1

This gives as a 99,87 percent probability case

£(x) = £Q0L) + (A-9)

With Mx. the nominal values of the parameters, which 'is the case, the
term on the right is the so-called root-sum-square value which has been
used previously in control studies as the design value, Thus, the root-
sum-square value of the function will not be exceeded 99.87 percent of
the time,

Corresponding Values for Related Functions

Often, in the control studies, it is necessary to determine what
value of B, for example, is required to obtain Ojgg in the vehicle
response to the wind. Thus, the B, together with simultaneous values
of the other system variables, must satisfy the differential equations
for the vehicle while ¢ assumes its rss value.

Our problem in doing this on the computer can be thought of in the
following manner. We have a function g given explicitly as a function
of the random variables, g(x;, ..., Xy), where f and g are related, but
the functional relationship, g = g(f), is not known explicitly. We have
computed the 3-¢ or rss value for £, and the problem is to determine
what value g has when f assumes its 3-¢ value.

There are many ways of solving this problem. 1In the wind response
studies, the following procedure is used: Let (Axj)sy; be the 3-c¢ varia-
tion in the parameter Xj;» Then, using equation (A-3), we obtain as an
absolute maximum (worst-on-worst case) for f

k

fpax = £y ooe M) + Z

i=1

fxi(Mxl, M"k) Oxi)s5le  (A-10)

19



Instead of uéing (A-3) for this calculation, one might use the computer
and the actual nonlinear function., Now, using the rss value, the equa-
lity in (A-9), for f, we have

s = E0xys coey My ) + (A-11)
Define
--f(Mx cevs )
A=< Tl Mxk . (A-12)
max X, e xk)

Note that A is a number that we can compute after computing (A-10) and
(A"].l)-

Consider now, a variation A(Ax;)sy; in each parameter xj, where
these variations are again taken in a direction which will maximize £
with A fixed, i.e,, using the first order approximation,

k

fA = f(M'Xl’ ooy Mxk) + Z fxi(Mxl’ ceo, Mxk) A(Axi):ﬁo' *
4 i=1

Since A is positive and independent of the summation index, it factofs;
and substituting from (A-12),

- E0h, ety )k
fA B J{:CM’xl’ e Mx ) + max - f(Mx s ---,Mxk) Z fxi(Mx) (AXi)zo

.

Obtaining £, - £(My) from (A-10),

= f(Mxl’ seo 0y MXk) + frss - f(Mxl, so0ey Mxk) = frss.

20




Thus, the rss value of f to a first order approximation is obtained by
taking A(Axi)sg as the variation on each xj. Consequently, the corres-
ponding value of g is

8(Mx]-_ + AMX1) 555 eee M'xk + A(Axk):sc)-

21



APPENDIX B
TWO DEGREES-OF-FREEDOM RIGID BODY EQUATIONS

The two-degrees-of-freedom equations of planar motion are

(ch - Xcg) CN - XCG RE

Ioo =

7 CN+RB+(F-X)cp

3

a g + ap + b,

Mq +M
O!a P

o

<=
]
Ne
R

a=0¢ +
The following are considered to have independent random perturbations

from their nominal values-with normal distributions.

center of pressure location

Xl = ch

Xz = Gy =

total aerodynamic normal force

center of gravity location

Xz = Xcg =
X, = I = moment of inertia
X5 = A3 = thrust vector misaligmment
X = F = thrust variation
| X, f a, = attitude error gain

Xg = bg angle-of-attack gain,
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The tolerance, or allowable spread, on each parameter is assumed to be
a 3-0 deviation,

24

P

b

N ™

The following symbols are used:
attitude error
attitude error rate
angle of attack
engine gimbal angle
drift normal to reference plane of flight
total thrust of gimbaled engines
total thrust
drag
attitude error rate gain

bending moment at a given station
change in bending moment due to a change in @
change in bending moment due to a change in 8

wind speed

total speed of vehicle.
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